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Abstract

This study presents the double Fourier cosine series method for
solving the flexural problem of Kirchhoff plates resting on an
elastic foundation of the Winkler type. The problem is a boundary
value problem represented by a fourth order partial differential
quantum. For the case of simply supported edges, the Dirichlet
boundary conditions are identically satisfied by double Fourier
cosine series if the plate centre becomes the origin of the
Cartesian coordinates. A Fourier cosine series assumption for the
unknown deflection function and the known load distribution
results in an algebraic problem for the unknown Fourier
parameters of the series; which is solved to obtain the deflection
function. The paper presents general solutions for deflection and
bending moments for arbitrary transverse load distribution and
specific solutions for the deflections and bending moments for the
specific cases of point load at arbitrary point, and at the centre,
uniformly distributed load over the entire plate and sinusoidal
load. It was found that the solutions obtained in this study were
exact solutions and this was because the double Fourier cosine
series used for the deflection shape functions were exact shape
functions that satisfies all the Dirichlet boundary conditions.
Furthermore, the trial solution was made to satisfy the boundary
value problem at all points in the solution domain.

Keywords: Double Fourier cosine series, Kirchhoff plate, Winkler
foundation, Boundary value problem.

1. Introduction

1.1 Background

The flexural problems of plates resting on elastic foundations and
subjected to transverse loads which are either distributed or acting
singularly at points on the plate are frequently encountered in
foundation and structural engineering. They occur in the analysis
and design of footings. They also arise in the solutions of
mathematical problems involving structural problems governed by
analogous fourth order partial differential equations of the
Kirchhoff plate on Winkler foundation problem. Such problem
commonly called soil — structure interaction problems are
formulated in mathematical terms by accounting for the soil
reaction model of the foundation in the governing differential
equations of the plate. [1- 4]. The formulation of the governing
equations are usually done using either an equilibrium method or
approach or a variational method [1]. In the equilibrium method,
the requirements of stress — strain laws, strain displacement
relations, the differential equations of equilibrium and the

compatibility relations are used in an integral manner to determine
the equations of the plate on elastic foundation problem. In the
variational method, the problem is formulated in integral form
using the principles of the calculus of variations. The total
potential energy functional is determined, and variational
techniques are applied for solution.

1.2 Plate theories

A review of literature shows that the theories for the flexural
behaviour and analysis of plates include: Lagrange plate theory,
Germain plate theory, Kirchhoff theory, Love theory, Von
Karman theory, Reissner [5, 6] plate theory, Mindlin [7] plate
theory, Shimpi [8] refined plate theory, Reddy’s [9] plate theory
and Levinson’s plate theory.

Plate theories are generally classified as: small deflection thin
plate theories, large deflection thin plate theories, moderately
thick plate theories and thick plate theories. This study adopts the
classical thin plate theory also called the Kirchhoff plate theory or
the Kirchhoff — Love plate theory. The Kirchhoff plate theory
(KPT) was originally formulated for thin plates with small
deflection, and the ratio of the plate thickness to the least

governing span, a is less than 1/20 (! ! —<$) The basic

hypotheses of the KPT include:

(1) straight lines that are orthogonal to the neutral surface
(middle plane) of the plate before flexure remain straight
after flexural deformation.

(ii) straight lines orthogonal (normal) to the plate’s middle
(neutral) surface before bending deformation remain
orthogonal to the plate’s middle surface after bending
deformation.

(iii) The thickness of the plate is constant and unchanging during
flexural deformation.

The Kirchhoff thin plate theory is thus a two-dimensional (2D)
approximation of the classical mathematical theory of elasticity in
three dimensional (3D) space applied to the formulation of the
plate bending problem. It is also considered a two-dimensional
extension of the one-dimensional Euler — Bernoulli beam theory.
The KPT assumes basically that a middle plane surface which lies
at z = 0 in between the top and bottom surfaces and is considered
neutral during bending deformations can be used to represent the
3D plate in a 2D domain [10]. The KPT like all other two-
dimensional plate theories determines the governing equation in
terms of unknown deflection of the middle surface, and equations
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for stresses, strains, displacements and stress resultants in terms of
the applied loads and support conditions.
The advantages of the KPT adopted include:

(1) the simplification of the mathematical formulation of the
plate problem to a 2D problem in the in-plane coordinates of
the plate domain.

(i1) the uncoupling of the flexural and stretching behaviours.

(iii) the resulting governing equation for the plate domain is
linear and can be solved using mathematical methods for
solving linear partial differential equations.

(iv) stresses can be obtained from the displacements fields using
the stress-displacement relations, and strains can be obtained
using the generalised Hooke’s law.

(v) itis applicable to thin plate bending problems.

The most significant limitation of the KPT is its disregard of the
transverse shear deformation in the formulation, rendering the
resulting governing equations unsuitable for the flexural analysis
of moderately thick and thick plate problems where transverse
shear deformation effects would be significant.

1.3 Foundation (Soil Interaction) models

The soil interaction on the interfacing footing is represented by
the soil reactive pressure distribution on the foundation [11]. The
soil reaction is expressed using mathematical expressions, which
depend on the type of foundation model used. In general, elastic
foundation models are categorized as elastic continuum models,
simplified elastic continuum models and discrete foundation
models [12, 13].

Elastic continuum foundation models idealize the foundation as an
elastic continuum and hence use the mathematical theory of
elasticity in three-dimensional space coordinate variables as the
theoretical framework to derive complicated mathematical
expressions for the soil reactions on the interfacing foundation
structure. Simplified elastic continuum foundation models rely on
the use of simplifying assumptions of stresses and/ or
deformations to obtain less rigorous and less complex solutions
from the elasticity theory for the problem.

Discrete or lumped parameter models are based on the
discretization of the elastic foundation parameters and replacing
them with a set of closely spaced discrete elastic springs that may
or may not be made to interact with one another. The discrete or
lumped parameter foundation models commonly found in the
literature of soil structure interaction are:

(i) Winkler [14] foundation model.

(i) Hetenyi [15] foundation model.

(iii) Pasternak [16] foundation model.

(iv) Filonenko — Borodich [17] foundation model.
(v) Kerr [18, 19] foundation model.

(vi) Vlasov foundation model [20 — 24].

(vii) Generalized two-parameter foundation model.
(viii)Generalised n-parameter foundation model.

The simplest model that describes the soil — reaction pressure
distribution is the Winkler foundation model, also called the one
parameter elastic foundation model. The Winkler model assumes
the soil can be replaced by a mechanical analogy of a bed of
closely spaced linearly elastic mechanical springs which are not
connected to one another and are placed directly beneath the
interfacing foundation. It further assumes, that at any point under
the foundation the soil reaction pressure p(x, y) is directly
proportional to the deflection w(x, y) and the proportionality
constant &k, which is the elastic property of the mechanical spring
analogue is the elastic foundation parameter characterising the
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elastic soil. The Winkler model is represented mathematically by
the simple equation:

. #H = 1#H (M
The proportionality constant &, is the Winkler coefficient or the

coefficient of subgrade reaction. The shortcomings of the Winkler
model are:

(1) the discontinuity in the deformation at the plate edges is
inconsistent with the elastic behaviour of soil as a 3D
continuum.

(i1) the independence of the vertical deformation at any point of
the vertical deformation of other adjoining/neighbouring
points contradict the results of stress analysis from the theory
of 3D elasticity.

Despite these limitations, the simple nature of the equation for soil
reaction pressure which results in relatively simple equations for
the soil — structure interaction (SSI) problem has accounted for its
extensive application in describing SSI problems.

The Hetenyi, Pasternak, Filonenko — Borodich, Vlasov and
generalised two parameter discrete foundation models were
formulated to incorporate couplings and interactions of the spring
elements, thus introducing second parameters that describe the
soil reaction pressure; and are called two parameter discrete
foundation models. The soil reaction pressure in two parameter
discrete foundation models is given generally by:

p(x, ) = kyw(x,y) — kK Vw(x, ) )

where £ is the first discrete parameter, 4 is the second discrete
parameter and V2 is the Laplacian operator, a partial differential
operator in two dimensional Cartesian coordinates expressed by:

v-2 .9 3)

1.4 Research aim and objectives

The research aim is to use the double Fourier cosine series method
to solve the problem of flexural analysis of simply supported
Kirchhoff plates resting on Winkler foundations for arbitrary and
specific transverse load distributions. The specific objectives are:

(1) to use the double Fourier cosine series method to obtain the
general solution for deflections, and bending moments for
the flexural problem of simply supported Kirchhoff plate
resting on Winkler foundation for the case of general
arbitrary distribution of transverse load.

(i1) to transform the boundary value problem of Kirchhoff plate
resting on Winkler foundation under arbitrary transverse load
distribution to an algebraic problem using the double Fourier
cosine series method.

(iii) to solve the resulting algebraic equation, and hence find
solutions for the general case of arbitrary distributed
transverse load on the Kirchhoff plate on Winkler
foundation.

(iv) to obtain solutions for the deflection function and bending
moment expressions for the flexural problem of Kirchhoff
plates resting on Winkler foundations for the following
specific types of transverse load:

(a) point load acting at a given point on the plate domain.

(b) Dbisinusoidal distribution of load over the entire plate domain.



(c) uniform distribution of transverse load on the entire plate
domain.

2. Theoretical framework
A rectangular Kirchhoff plate with inplane dimensions of length

a, and width b resting on an elastic foundation of the Winkler type
as shown in Figure 1, was considered in the work.
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Fig. 1: Rectangular Kirchhoff plate on Winkler foundation under
arbitrary (general) load distribution

The governing partial differential equation (PDE) is the fourth
order equation defined over the plate domain:

L+ 1V = () )
or XU+ —1("H =—("H) (5)
where £ x E; — —

. by 2 2 o4 o4 o4
V' =VV :(6—24-6—2} :6—4+2W+a—4 (6)

D is the flexural rigidity of the plate material, £ is the Young’s
modulus of elasticity, k£ is the Winkler modulus of soil reaction,
w(x, y) is the transverse deflection of the plate’s middle surface,
p(x, y) is the distributed transverse load intensity, and x and y are
the in-plane Cartesian coordinate variables. D is related to the
plate’s elastic and geometrical properties as:

3
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where / is the thickness of the plate and p is the Poisson’s ratio of
the plate material.

The origin, O, of the Cartesian coordinates system is chosen at the
plate centre and this takes advantage of the symmetrical nature of
the thin plate. The definition of the origin at the centre can also be
of advantage when the load distribution considered is also
symmetrical about the plate centre. For the case of Kirchhoff plate
resting on elastic foundation of the Winkler type, with all four
edges x = *a/2, y = +b/2 simply supported, the geometric and
force boundary conditions are as follows:

a
at x =+ —

(=)
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3. Methodology

In the double Fourier cosine series method, the unknown function
w(x, y) in the governing PDE as well as the known distribution of
load p(x, y) are assumed in the form of double Fourier cosine
series of infinite terms. Thus,

w(x,y)= W, COS 22 os 2L (12)
i a b

p(xy) = P COS T c0s T (13)
— — a
m n

Wan are the unknown generalised deflection parameters

Ppmn are the parameters of the Fourier cosine series of the load
where m =1,3,5,7,...;n =1,3,5,7, ...

It is observed that this assumption for w(x, y) satisfies all the
geometric and force boundary conditions associated with the four
edges.

By Fourier series theory, the Fourier series coefficients of the load
are:

12 12
4 R L R (14)
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Then the fourth order PDE Equation (5) becomes:
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ZZ{[(MJ (ﬁ—“j]+%} cos%cos%
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Multiplying both sides of Equation (19) by cos M cos

and integrating over the plate domain, we have
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Using the orthogonality properties of the trigonometric cosine
series,
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The bending moment distributions are
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Using the results for w(x, y) we have
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o 7 DPmn €OS COS T

4. Results
4.1 Point load P; at (x;, yi;) where —%<x1<%;

2 T2

The results for pun, Wam, W(x, ¥), M. and M,, for Kirchhoff plate
resting on Winkler foundation under point load P; acting at an
arbitrary point (x1, y1) on the plate domain is obtained using Dirac
delta function theory in the general solutions for arbitrary
transverse load distribution. Thus,

)
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For a point load P; acting at the centre of the Kirchhoff plate on
Winker foundation, x; = 0, y; = 0, and the maximum deflection
and bending moments would occur at the plate centre, and are
obtained as follows:
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For simply supported square Kirchhoff plate resting on Winkler
foundation under point load P acting at the plate centre, a = b, x =
0, » = 0 and the maximum deflection and bending moments which
occur at the centre are given by:

ap, 1
TP Th i 22 42
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4
a
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4.2 Results for transverse load distribution as
X "
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where m =1, n =1
D =0 if m#1 n#1 (60)

Then,
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The maximum values of the deflection and bending moments 4.3 Results for uniformly distributed load p(x, y) = p

occur at the plate centre x = 0, y = 0 and are given by: over the entire plate domain
$, 1 For the case of uniformly distributed transverse load of intensity p
Bpax = — P (68) over the entire plate region, the double Fourier cosine series
SO - B coefficient p,, is found as:
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Then,
For square plates, @ = b, and:
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The maximum values of the deflection, and bending moments
occur at the centre, and are:
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The maximum twisting moment is:
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5. Discussion

The method of double Fourier cosine series has been effectively
used in this work to solve the flexural problem of simply
supported Kirchhoff plate resting on Winkler foundation. The
problem is described mathematically as a boundary value problem
given by Equations (5) and (8 — 11) where Equations (8 — 11)
represent the boundary conditions for the choice of origin at the
centre, and Equation (5) is the domain governing partial
differential equation. Double Fourier cosine series of the form
given by Equation (12) was shown to identically satisfy the
boundary conditions, and for the transverse load distribution given
by Equation (13), the boundary value problem was shown to
decompose to an algebraic problem, Equating (23) in terms of
W, the unknown parameters of the double Fourier cosine series.
The algebraic eigenvalue problem was solved to obtain the
unknown generalised displacement parameter w,,, of the double
Fourier cosine series as Equation (26). The unknown deflection
was thus obtained for general arbitrary distribution of transverse
load as Equation (27). The solutions for bending and twisting
moments were found using the bending moment — curvature
expressions, as Equations (31 —33).
For the specific case of point load P; at an arbitrary point on the
plate domain, the deflection function was obtained as Equation
(39) and the bending moments were found as Equations (40) and
(41). For point load applied at the centre for square Kirchhoff
plates on Winkler foundation the maximum values for deflection
and bending moments were obtained as Equation (53), (54) and
(55).
The solution of the flexural problem of simply supported
rectangular Kirchhoff plate on Winkler foundation for the case of
sinusoidal load distribution was obtained as Equation (61) for
deflection and Equations (65 — 67) for bending and twisting
moments. In that case, the maximum values of deflection and
bending moments were found to occur at the plate centre, and are
given by Equations (70), (71) and (72). For square Kirchhoff
plates on Winkler’s foundation, the maximum deflection occurred
at the centre and was found as Equation (75); the maximum
bending moment occurred at the centre and was found as Equation
(78). The maximum twisting moment was found as Equation (80).
For the case of simply supported Kirchhoff plate on Winkler
foundation, the deflection and bending moment expressions were
found as Equations (89), (90) and (91). The maximum values of
the deflection and bending moments were found in compliance
with symmetry of the problem to occur of the plate centre and
were found as Equations (93), (94) and (95).
The double Fourier cosine series method give solutions for simply
supported square Kirchhoff plate on Winkler foundation for the
case of uniformly distributed transverse load for various values of
the non-dimensional Winkler parameter KND varying from KND
=0to KND =5 as shown in Table 1. The solutions for maximum
deflection and maximum bending and twisting moments obtained
for simply supported square Kirchhoff plate on Winkler
foundation for the case of sinusoidal load for different values of
4
non-dimensional Winkler parameter KND = % varying from

KND =0 to KND = 7 were calculated and tabulated in Table 2.

Table 1 shows that the maximum deflections and maximum
bending moments which occur at the plate centre decrease as the
elastic stiffness of the Winkler foundation defined by the non-
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dimensional Winkler parameter increases. From Table 2, it is
similarly observed that with increase in the elastic stiffness of the
soil as measured by the non-dimensional Winkler parameter KND,
the maximum deflections, bending and twisting moments reduce.

It is also observed that the solutions obtained for deflection, and
bending moments for all cases of load considered were double
trigonometric (cosine) series of infinite terms. The double cosine
series obtained for deflection were rapidly convergent for
sinusoidal and uniformly distributed loads, but less rapidly
convergent for point load, obviously due to the singular property

of point loads. The series obtained for bending moments were less
rapidly convergent for sinusoidal and uniformly distributed loads.
The rapid convergence of the double Fourier cosine series
obtained for the deflections for distributed loads led to sufficiently
accurate results with only a few terms of the series. However,
more terms of the series for bending moments were used for
satisfactorily convergent results.

Table 1: Galerkin solution for deflection and bending moment coefficients for simply supported Kirchhoff plate on Winkler foundation

for uniform load on the plate and square plates

ra® 1/4
(/ :1) KND:(L)
D
!
0 | (2] | O ) M ) | M ()
0 4.062 4.790 4.790
1 4.053 4.809 4.809 2.943
3 3.348 3.910 3.910 2.456
5 1.507 1.575 1.575 1.181

Table 2: Galerkin solution for maximum deflections and bending moment coefficients for simply supported square Kirchhoff plate on

Winkler foundations for sinusoidal load (1,™)= cos—!cos—, (u=0.30)
ka® v )4 a

KND = [?j Winax R X M, xpa M, xpa

0 2.5665 0.03293 0.03293 0.001797

1 "= 0.03285 0.03285 0.001792

3 2.1248 0.02726 0.02726 0.001487

5 0.98557 0.01265 0.01265 0.0006899

7 0.35834 0.0045977 0.0045977 | 0.00025084 =2.508 x1074

6. Conclusions
The conclusions of the work are as follows:

1. The double Fourier cosine series method simplifies the problem
of flexure of simply supported Kirchhoff plate resting on Winkler
foundation to an algebraic problem in terms of the unknown
generalised deflection parameters w,, of the double Fourier
cosine series of the deflection function.

2. The method gave analytically closed form solutions for the
deflections, bending and twisting moments for the simply
supported Kirchhoff plate on Winkler foundation problem under
transverse distributed load.

3. As the elastic stiffness of the Winkler foundation increased, the
maximum deflections and maximum bending moments reduced.

4. The Dirichlet boundary conditions associated with the simply
supported edges simplified the use of the double Fourier cosine
series method.

5. The double Fourier cosine series expressions obtained for the
deflections were more rapidly convergent than the expressions
obtained for the bending and twisting moments.

6. The double Fourier cosine series expression obtained for the
deflections and bending moments in the case of point load acting
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on the plate on Winkler foundation were very slow in
convergence due to the singularity property of the point load.
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